The Subsumption Lattice and Query Learning

نویسندگان

  • Marta Arias
  • Roni Khardon
چکیده

The paper identifies several new properties of the lattice induced by the subsumption relation over first-order clauses and derives implications of these for learnability. In particular, it is shown that the length of subsumption chains of function free clauses with bounded size can be exponential in the size. This suggests that simple algorithmic approaches that rely on repeating minimal subsumption-based refinements may require a long time to converge. It is also shown that with bounded size clauses the subsumption lattice has a large branching factor. This is used to show that the class of first-order length-bounded monotone clauses is not properly learnable from membership queries alone. Finally, the paper studies pairing, a generalization operation that takes two clauses and returns a number of possible generalizations. It is shown that there are clauses with an exponential number of pairing results which are not related to each other by subsumption. This is used to show that recent pairing-based algorithms can make exponentially many queries on some learning problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lambda-Subsumption and Its Application to Learning from Positive-only Examples

The general aim of the present paper is to show the advantages of the model-theoretic approach to Inductive Logic Programming. The paper introduces a new generality ordering between Horn clauses, called-subsumption. It is stronger than-subsumption and weaker than generalized subsumption. Most importantly-subsumption allows to compare clauses in a local sense, i.e. with respect to a partial inte...

متن کامل

Logic-based machine learning using a bounded hypothesis space : the lattice structure, refinement operators and a genetic algorithm approach

Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to ...

متن کامل

Simulation Subsumption or Déjà vu on the Web

Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive ...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

subsumption for structural matching

Structural matching originally introduced by Steven Vere in the mid seventies was a popular sub eld of inductive concept learning in the late seventies and early eighties Despite various attempts to formalize and implement the notion of most speci c generalisation of two productions several problems remained These include using background knowledge the non uniqueness of most speci c generalisat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004